Objective 1 Review Conditional, Converse, Inverse, and Contrapositive Statements

<table>
<thead>
<tr>
<th>Name</th>
<th>How to Write It (in words)</th>
<th>How to Write It (in Symbols)</th>
</tr>
</thead>
</table>
| **Conditional** | Given: hypothesis p
conclusion q | \(p \rightarrow q \) (if p then q) |
| **Converse** | Switch the hypothesis and the conclusion. | \(q \rightarrow p \) (if q then p) |
| **Inverse** | Negate the hypothesis and the conclusion of the conditional statement. | \(\sim p \rightarrow \sim q \) (if not p then not q) |
| **Contrapositive** | Negate the hypothesis and the conclusion of the converse statement. | \(\sim q \rightarrow \sim p \) (if not q then not p) |

Conditional and Contrapositive Statements are Equivalent Statements.
Converse and Inverse Statements are Equivalent Statements.

Work Video Exercises 1 & 2 with me.

Given \(p \) and \(q \), write each statement.

\[
p : m \angle A = m \angle B
q : \angle A \text{ is congruent to } \angle B
\]

1. \(\sim p \)

2. \(\sim p \rightarrow q \)

Pause and work Video Exercise 3.

Some statements have special names. Give the name for the exercise. (Here, \(p \rightarrow q \) is our original conditional statement.)

3. \(\sim p \rightarrow \sim q \)

Play and check.
Section 2.5 Deductive Reasoning

Pause and work Video Exercise 4.
Use the hypothesis \((p)\) and conclusion \((q)\) given to write the conditional statement.

\[p: \text{a figure has seven sides} \]
\[q: \text{the figure is a heptagon} \]

4. inverse

Play and check.

Objective 2 Understand and Use the Two Laws of Deductive Reasoning: The Law of Detachment and the Law of Syllogism

Deductive reasoning is the process of proving a specific conclusion from one or more general statements. A conclusion that is proved true by deductive reasoning is called a theorem.

A conclusion that is proved true by deductive reasoning is called a(n) __________.

Law of Detachment: If \(p \rightarrow q \) is a true conditional statement and \(p \) is true, then \(q \) is true.

Law of Syllogism: If \(p \rightarrow q \) is true and \(q \rightarrow r \) is true, then \(p \rightarrow r \) is a true conditional statement.

Work Video Exercises 5 & 6 with me.
If possible, use the Law of Detachment to make a conclusion. If it is not possible to make a conclusion, tell why. (Assume that the first statement \(p \rightarrow q \) is true.)

5. If three points are on the same line, then they are collinear.
Points \(X, Y, \) and \(Z \) are on line \(m \).
If possible, use the Law of Syllogism to make a conclusion. If it is not possible to make a conclusion, tell why. Assume the statement is true.

6. If a whole number ends in 6, then it is divisible by 2.
 If a whole number ends in 4, then it is divisible by 2.

Pause and work Video Exercises 7 & 8.
Complete a. and b.

a. Make conclusions from the following statements.

b. Note which law you used to make a conclusion, the law of Detachment or the Law of Syllogism.

7. If you ride a bicycle, then you are exercising.
 You ride a bicycle.

8. If you are studying botany, then you are studying biology.
 If you are studying biology, then you are studying a science.

Play and check.