Objective 1 Use Relationships Among Sides and Angles of Parallelograms

A(n) __________ is a quadrilateral with both pairs of opposite sides parallel.

In a parallelogram and in all other quadrilaterals, opposite sides do not share a ______ and opposite angles do not share a ______.

The “☐” notation means “parallelogram”.

Opposite Sides of a Parallelogram Theorem

<table>
<thead>
<tr>
<th>Theorem</th>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a quadrilateral is a parallelogram, then its opposite sides are congruent.</td>
<td>$ABCD$ is a $☐$</td>
<td>$AB \cong CD$ and $BC \cong DA$</td>
</tr>
</tbody>
</table>
Opposite Angles of a Parallelogram Theorem

<table>
<thead>
<tr>
<th>Theorem</th>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a quadrilateral is a parallelogram, then its opposite angles are congruent.</td>
<td>$ABCD$ is a \square</td>
<td>$\angle A \cong \angle C$ and $\angle B \cong \angle D$</td>
</tr>
</tbody>
</table>

Work Video Exercises 1 & 2 with me.

Multiple Choice. Use $\square MNQP$ to find the indicated value.

1. $m\angle M =$
 - a. 138°
 - b. 42°
 - c. 222°
 - d. 48°

2. $NQ =$
 - a. 6.5 cm
 - b. 1.5 cm
 - c. 4 cm
 - d. 2.5 cm
Objective 2

Use Relationships Among Consecutive Angles and Diagonals of Parallelograms

Angles of a polygon that share a side are consecutive angles. \(\angle A \) and \(\angle D \) are consecutive angles. \(\angle D \) and \(\angle C \) are consecutive angles. \(\angle C \) and \(\angle B \) are consecutive angles. \(\angle B \) and \(\angle A \) are consecutive angles.

Consecutive Angles of a Parallelogram Theorem

<table>
<thead>
<tr>
<th>Theorem</th>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| If a quadrilateral is a parallelogram, then its consecutive angles are supplementary. | \(ABCD \) is a \(\square \) | \(m\angle A + m\angle B = 180^\circ \)
\(m\angle B + m\angle C = 180^\circ \)
\(m\angle C + m\angle D = 180^\circ \)
\(m\angle D + m\angle A = 180^\circ \) |
Section 6.2 Parallelograms

Diagonals of a Parallelogram Theorem

<table>
<thead>
<tr>
<th>Theorem</th>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a quadrilateral is a parallelogram, then its diagonals bisect each other.</td>
<td>$ABCD$ is a \square</td>
<td>$AE \cong CE$ and $BE \cong DE$</td>
</tr>
</tbody>
</table>

Any two consecutive angles of a parallelogram have a sum of _____. (supplementary)

Work Video Exercise 4 with me.

4. Find the value of x in the parallelogram.

```
\[ \begin{array}{c}
\text{ } \\
53^\circ \\
\text{ } \\
\text{ } \\
x^\circ
\end{array} \]
```

Pause and work Video Exercise 5.

Find the value of the variable in the parallelogram.

5.

```
\[ \begin{array}{c}
\text{ } \\
(6x + 14)^\circ \\
\text{ } \\
(2x + 30)^\circ
\end{array} \]
```

Play and check.
Work Video Exercises 6 & 7 with me.

Find the indicated measure in $\square ABDC$.

6. AD

7. CD

Multiple Parallel Lines and Transversals Theorem

<table>
<thead>
<tr>
<th>Theorem</th>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If three (or more) parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.</td>
<td>$\overline{AB} \parallel \overline{CD} \parallel \overline{EF}$ and $\overline{AC} \cong \overline{CE}$</td>
<td>$\overline{BD} \cong \overline{DF}$</td>
</tr>
</tbody>
</table>
Work Video Exercise 8 & 9 with me.

In the figure, \(PQ = QR = RS \). Find the indicated length.

8. \(ZU \)

9. \(TU \)