Complete the outline as you view Video Lecture 12.2. Pause the video as needed to fill in the blanks. Then press Play to continue. Also, circle your answer to each numbered exercise.

Objective 1 \hspace{1cm} Use Congruent Chords, Arcs, and Central Angles

1. A(n) ________ is a segment whose endpoints are on the circle.

2. A(n) ________ is a special chord (that passes through the center of the circle.)

Congruent Central Angles and Arcs

Theorem

Within a circle or in congruent circles, congruent central angles have congruent arcs.

Converse

If $\angle AOB \equiv \angle COD$, then $\overline{AB} \equiv \overline{CD}$.

If $\overline{AB} \equiv \overline{CD}$, then $\angle AOB \equiv \angle COD$.

Congruent Central Angles and Chords

Theorem

Within a circle or in congruent circles, congruent central angles have congruent chords.

Converse

If $\angle AOB \equiv \angle COD$, then $\overline{AB} \equiv \overline{CD}$.

If $\overline{AB} \equiv \overline{CD}$, then $\angle AOB \equiv \angle COD$.

Copyright © 2014 Pearson Education, Inc. 289
Congruent Chords and Arcs

Theorem
Within a circle or in congruent circles, congruent chords have congruent arcs.

Converse
Within a circle or in congruent circles, congruent arcs have congruent chords.

Work Video Exercises 1–3 with me.

In \(\odot O \), \(\overline{CD} = 50^\circ \) and \(\overline{CA} \equiv \overline{BD} \). Also, the center of the circle, point \(O \), is the intersection of \(\overline{CB} \) and \(\overline{AD} \).

1. Find \(m\angle 1 \).

2. Find \(m\angle 2 \).

3. What is \(m\overline{AB} \)?

Chords Equidistant from the Center Are Congruent

Theorem
Within a circle or in congruent circles, chords equidistant from the center or centers are congruent.

Converse
Within a circle or in congruent circles, congruent chords are equidistant from the center (or centers).
Objective 2 Use Perpendicular Bisectors to Chords

<table>
<thead>
<tr>
<th>Theorem</th>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 2 Use Perpendicular Bisectors to Chords</td>
<td>Theorem In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and its arc.</td>
<td>Theorem If... Then... In a circle, if a diameter is (AB) and (\overline{AB} \perp \overline{CD}).</td>
</tr>
<tr>
<td>Theorem In a circle, if a diameter bisects a chord (that is not a diameter), then it is perpendicular to the chord.</td>
<td>Theorem In a circle, if a diameter bisects a chord (that is not a diameter), then it is perpendicular to the chord.</td>
<td>Theorem If... Then... In a circle, if a diameter bisects a chord (that is not a diameter), then it is perpendicular to the chord.</td>
</tr>
<tr>
<td>Theorem In a circle, the perpendicular bisector of a chord contains the center of the circle.</td>
<td>Theorem In a circle, the perpendicular bisector of a chord contains the center of the circle.</td>
<td>Theorem If... Then... In a circle, the perpendicular bisector of a chord contains the center of (\odot O).</td>
</tr>
</tbody>
</table>
Work Video Exercise 5 with me.

5. Find the value of x to the nearest tenth.

Pause and work Video Exercise 6.

6. Find the value of x.

Play and check.

If a diameter bisects a chord, then it is perpendicular to the chord.